Nanomushroom via @MCHScience

This “nanomushroom” happened to grow among a field of nanowires. Researchers grow many types of nanostructures, some for their intrinsic properties, and others as tools. The Electron Transfer group at New Mexico State University grows their nanowires to help probe the electron transfer properties of organic molecules. The mushroom may not be quite what they were looking for, but it is a great example of the range of shapes nanostructures can come in.

Credit: Credit Pavel Takmakov, Ivan Vlassiuok and Sergei Smirnov

The self-assembly(1, 2)and the evolution(3)of a molecular nanowheel

Or, in other words, the creation of life-like cells from metal: Leroy Cronin and his team have try to demonstrate that life could be born also from metal atoms.

There is every possibility that there are life forms out there which aren’t based on carbon, On Mercury, the materials are all different. There might be a creature made of inorganic elements.
(Tadashi Sugawara, University of Tokyo)

(1) Haralampos N. Miras, Geoffrey J. T. Cooper, De-Liang Long, Hartmut Bögge, Achim Müller, Carsten Streb, Leroy Cronin (2010). Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel Science, 327 (5961), 72-74 DOI: 10.1126/science.1181735
(2) Johannes Thiel, Pedro I. Molina, Mark D. Symes, Leroy Cronin (2012). Insights into the Self-Assembly Mechanism of the Modular Polyoxometalate “Keggin-Net” Family of Framework Materials and Their Electronic Properties Crystal growth and design, 12 (2), 902-908 DOI: 10.1021/cg201342z
(3) Haralampos N. Miras, Craig J. Richmond, De-Liang Long, Leroy Cronin (2012). Solution-Phase Monitoring of the Structural Evolution of a Molybdenum Blue Nanoring Jouornal of the American Chemical Society, 134 (852), 3816-3824 DOI: 10.1021/ja210206z