The Odd Trio
The Cassini spacecraft captures a rare family photo of three of Saturn’s moons that couldn’t be more different from each other! As the largest of the three, Tethys (image center) is round and has a variety of terrains across its surface. Meanwhile, Hyperion (to the upper-left of Tethys) is the “wild one” with a chaotic spin and Prometheus (lower-left) is a tiny moon that busies itself sculpting the F ring.
To learn more about the surface of Tethys (660 miles, or 1,062 kilometers across), see PIA17164. More on the chaotic spin of Hyperion (168 miles, or 270 kilometers across) can be found at PIA07683. And discover more about the role of Prometheus (53 miles, or 86 kilometers across) in shaping the F ring in PIA12786.
This view looks toward the sunlit side of the rings from about 1 degree above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014.
The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
Credit: NASA/JPL-Caltech/Space Science Institute

The Odd Trio

The Cassini spacecraft captures a rare family photo of three of Saturn’s moons that couldn’t be more different from each other! As the largest of the three, Tethys (image center) is round and has a variety of terrains across its surface. Meanwhile, Hyperion (to the upper-left of Tethys) is the “wild one” with a chaotic spin and Prometheus (lower-left) is a tiny moon that busies itself sculpting the F ring.
To learn more about the surface of Tethys (660 miles, or 1,062 kilometers across), see PIA17164. More on the chaotic spin of Hyperion (168 miles, or 270 kilometers across) can be found at PIA07683. And discover more about the role of Prometheus (53 miles, or 86 kilometers across) in shaping the F ring in PIA12786.
This view looks toward the sunlit side of the rings from about 1 degree above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014. The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

Credit: NASA/JPL-Caltech/Space Science Institute

And I’m not happy with all the analyses that go with just the classical theory, because nature isn’t classical, damrnit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.
Richard Feynman from Simulating Physics with Computers (pdf), introductory lecture at the first conference on Physics and Computation at MIT, 1981
And I’m not happy with all the analyses that go with just the classical theory, because nature isn’t classical, damrnit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.

Richard Feynman from Simulating Physics with Computers (pdf), introductory lecture at the first conference on Physics and Computation at MIT, 1981

Leonard Susskind about the Universe
You are a victim of your own neural architecture which doesn’t permit you to imagine anything outside of three dimensions. Even two dimensions. People know they can’t visualise four or five dimensions, but they think they can close their eyes and see two dimensions. But they can’t. When you close your eyes and try to see two dimensions you’ll always see a surface embedded in three dimensions.
Is there something special about three dimensions? No. There is something special about your neural architecture. You evolved in a world where everything inside your brain is hooked up and geared to be able to see three dimensions and nothing else.

Leonard Susskind about the Universe

You are a victim of your own neural architecture which doesn’t permit you to imagine anything outside of three dimensions. Even two dimensions. People know they can’t visualise four or five dimensions, but they think they can close their eyes and see two dimensions. But they can’t. When you close your eyes and try to see two dimensions you’ll always see a surface embedded in three dimensions.
Is there something special about three dimensions? No. There is something special about your neural architecture. You evolved in a world where everything inside your brain is hooked up and geared to be able to see three dimensions and nothing else.
Unprecedented X-ray View of Supernova Remains
The destructive results of a powerful supernova explosion reveal themselves in a delicate tapestry of X-ray light, as seen in this image from NASA’s Chandra X-Ray Observatory and the European Space Agency’s XMM-Newton.
The image shows the remains of a supernova that would have been witnessed on Earth about 3,700 years ago. The remnant is called Puppis A, and is around 7,000 light years away and about 10 light years across. This image provides the most complete and detailed X-ray view of Puppis A ever obtained, made by combining a mosaic of different Chandra and XMM-Newton observations. Low-energy X-rays are shown in red, medium-energy X-rays are in green and high energy X-rays are colored blue.
These observations act as a probe of the gas surrounding Puppis A, known as the interstellar medium. The complex appearance of the remnant shows that Puppis A is expanding into an interstellar medium that probably has a knotty structure.
Supernova explosions forge the heavy elements that can provide the raw material from which future generations of stars and planets will form. Studying how supernova remnants expand into the galaxy and interact with other material provides critical clues into our own origins.
A paper describing these results was published in the July 2013 issue of Astronomy and Astrophysics and is available online. The first author is Gloria Dubner from the Instituto de Astronomía y Física del Espacio in Buenos Aires in Argentina.
Image credit: NASA/CXC/IAFE/G.Dubner et al & ESA/XMM-Newton

Unprecedented X-ray View of Supernova Remains

The destructive results of a powerful supernova explosion reveal themselves in a delicate tapestry of X-ray light, as seen in this image from NASA’s Chandra X-Ray Observatory and the European Space Agency’s XMM-Newton.
The image shows the remains of a supernova that would have been witnessed on Earth about 3,700 years ago. The remnant is called Puppis A, and is around 7,000 light years away and about 10 light years across. This image provides the most complete and detailed X-ray view of Puppis A ever obtained, made by combining a mosaic of different Chandra and XMM-Newton observations. Low-energy X-rays are shown in red, medium-energy X-rays are in green and high energy X-rays are colored blue.
These observations act as a probe of the gas surrounding Puppis A, known as the interstellar medium. The complex appearance of the remnant shows that Puppis A is expanding into an interstellar medium that probably has a knotty structure.
Supernova explosions forge the heavy elements that can provide the raw material from which future generations of stars and planets will form. Studying how supernova remnants expand into the galaxy and interact with other material provides critical clues into our own origins. A paper describing these results was published in the July 2013 issue of Astronomy and Astrophysics and is available online. The first author is Gloria Dubner from the Instituto de Astronomía y Física del Espacio in Buenos Aires in Argentina.

Image credit: NASA/CXC/IAFE/G.Dubner et al & ESA/XMM-Newton